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Abstract Carboxylate hydrazinate complex involving

mixed metals have been synthesized and used as precur-

sor for preparing the nanocrystalline Mn–Ni–Zn ferrite.

Chemical composition of complex was fixed from chemi-

cal analysis results, infrared studies, thermogravimetric and

differential scanning calorimetric analysis and isothermal

weight loss studies. Nano-crystalline Mn–Ni–Zn ferrite

particles obtained by thermal autocatalytic decomposition

were characterized using X-ray diffraction studies, infrared

spectral studies and TEM measurement. Two peaks in the

region of 340–420 and 550–660 cm-1 observed in the

infrared spectrum of ‘‘as synthesized’’ oxide are charac-

teristics of spinel ferrites. Average particle size of ‘‘as

synthesized’’ Mn–Ni–Zn ferrite was found to be 10 nm.

‘‘As synthesized’’ Mn–Ni–Zn ferrite showed Curie point at

313 �C. Saturation magnetization (44.7 emu/g) observed

for ‘‘as synthesized’’ Mn–Ni–Zn ferrite is lower than bulk

material which is indicative of its nano-crystalline nature.

Seebeck coefficient measurement has shown that the

material exhibits n-type semiconducting behavior.
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Introduction

Spinel ferrites are investigated in the recent years for their

useful electrical and magnetic properties which find appli-

cations in information storage systems, magnetic bulk cores,

magnetic fluids, microwave absorbers, and medical diag-

nostics [1]. Recently, the nano-crystalline ferrites are gain-

ing more importance due to their unusual magnetic behavior

and promising technological applications. Mn–Zn ferrites

are widely used for magnetic application due to their high

permeability and high magnetization [2]. Ni–Zn ferrites on

the other hand possess high resistivity, but relatively low

permeability at high frequencies [3]. For high frequency

magnetic application ferrites with high permeability as well

as high resistivity are needed. A combination of these two

ferrites is envisaged to meet these requirements [4]. The

magnetic and electrical properties of ferrites are sensitive to

the cation distributions which in turn depend on method of

synthesis. Various wet chemical methods like co-precipita-

tion [5, 6], sol–gel [7–10] have been developed which are

found to be superior over conventional ceramic method.

Metal as well as mixed metal carboxylate complexes are

found to be very good precursors for the synthesis of nano-

crystalline metal as well as mixed metal oxides, as these

precursors decomposes at comparatively lower tempera-

tures [11, 12]. Coordination of hydrazine to the carboxylate

was found to lower the decomposition temperature of metal

carboxylate by providing the exothermicity [13]. Many such

synthesis of metal oxides and mixed metal oxides using

metal hydrazine complexes of oxalate [14, 15], glyoxylates
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[16] sulfite [17], formate [18], acetate [19], malonate, suc-

cinate and itaconates [20–25], maleate [26] malate [27], and

fumarate [26, 28–35] have been reported.

One such novel mixed metal hydrazine complex involv-

ing fumarate dianion is synthesized, characterized and suc-

cessfully employed in the preparation of nano-crystalline

Mn0.3Ni0.3Zn0.4Fe2O4. The magnetic and electrical proper-

ties of ‘‘as synthesized’’ Mn0.3Ni0.3Zn0.4Fe2O4 are also

studied. As these ferrites are technologically important

material extensively used in applications such as trans-

former core, noise filters, recording heads, etc. due to their

high initial permeability and high saturation magnetization.

Experimental

Preparation of manganese nickel zinc ferrous

fumarato–hydrazinate complex

The preparation method is similar to the earlier reported

method [32]. The yellow precipitate obtained was filtered,

washed with ethanol and dried with diethyl ether by suc-

tion. The dried precursor was stored in vacuum desiccators.

Characterization

The hydrazine content in the precursor was determined by

volumetric analysis using standard 0.025 M KIO3 solution

under Andrew’s conditions [36]. The metal content was

determined by chemical analysis. The structure and phase

purity of the manganese nickel zinc ferrite was determined

on a Philips X-ray diffractometer model PW 3710 with Cu

Ka radiations and Ni filter. Transmission electron micro-

graph analysis was carried out on a JEOL JEM 2100F

electron microscope. Simultaneous thermogravimetric and

differential thermal analysis of the precursor was recorded

on NETZSCH DSC-TG STA 409PC at a heating rate of

10 �C per minute. Isothermal weight loss and total weight

loss studies along with hydrazine analysis of the complex

were carried out at various predetermined temperatures.

Infrared spectral analysis of the complex and ‘‘as synthe-

sized’’ ferrite was recorded on a FTIR Shimadzu IR

Prestige 21 Series Spectrophotometer. The saturation

magnetization of the as-synthesized powder was measured

on alternating current hysteresis loop tracer described by

Likhite et al. [37] and supplied by M/s Prutha Electronics,

Mumbai, India. Curie temperature measurement was car-

ried out from variation of magnetic moment as a function

of temperature as describe by Likhite and Radhakrishna-

murthy [38]. A dc resistivity measurement was carried out

using two probe methods.

Autocatalytic decomposition of the precursor complex

Autocatalytic decomposition of the precursor was carried

out spreading it uniformly in a ceramic tile and burning

with splinter. When small portion catches fire, a red glow

that formed spreads over the entire bulk completing the

total decomposition of the precursor in an ordinary atmo-

sphere to form ferrite at lower temperature. This ‘‘as syn-

thesized’’ Mn0.3Ni0.3Zn0.4Fe2O4 powder was heated at

400 �C for 5 h to remove any residual carbon formed

during the decomposition of coordination complex and

pelletized under a pressure of 7 tones per square inch for

3 min. Pellet of dimension 10 mm in diameter and 2 mm

in thickness was used for measurement of magnetic and

electrical properties.

Result and discussion

A chemical formula of Mn0.3Ni0.3Zn0.4Fe2(C4H2O4)3�
6N2H4 has been fixed based on the total percentage mass

loss 66.66 % (66.60 %), percentage of hydrazine 27.22 %

(27.24 %), manganese 2.30 % (2.33 %), nickel 2.45 %

(2.49 %), zinc 3.65 % (3.70 %), and iron 15.82 % (15.82 %)

which match closely with the calculated values given in the

parenthesis (Table 1) considering above composition. The

infrared spectra of the precursor (Fig. 1) show three bands in

the region 3,167–3,352 cm-1 which are characteristics of

N–H stretching and in the range of 1,552–1,585 cm-1 which

are due to NH2 deformation. The N–N stretching frequency

is observed at 977 cm-1 which confirms the bidentate

bridging nature of hydrazine ligand [39, 40]. The asymmetric

and symmetric stretching frequencies of the carboxylate ion

in the precursor are observed at 1624 and 1385 cm-1,

respectively, with separation Dm (masy-msym) of 239 cm-1

indicating the monodentate linkage of both carboxylate

groups in the dianions [41]. Thus, the fumarate dianion

coordinate to the metal as bidentate ligand in the complex.

These results supports the formation of Mn0.3Ni0.3Zn0.4

Fe2(C4H2O4)3�6N2H4 complex. Besides thermogravimetry,

Table 1 Chemical and thermal analysis of manganese nickel zinc ferrous fumarato-hydrazinate, Mn0.3Ni0.3Zn0.4Fe2(C4H2O4)3�6N2H4

Precursor complex Mn/% Ni/% Zn/% Fe/% N2H4/% Total mass loss/%

Obs Calc. Obs Calc. Obs Calc. Obs Calc. Obs Calc. Obs Calc.

Mn0.3Ni0.3Zn0.4Fe2 (C4H2O4)3�6N2H4 2.30 2.33 2.45 2.49 3.68 3.70 15.82 15.82 27.24 27.22 66.66 66.60
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thermal decomposition of the complex was also studied

using infrared spectroscopy by carefully heating the pre-

cursor at the rate of 4 �C per minute. Infrared spectra of the

precursor heated at 170 �C shows no peaks in the region

which corresponds to the N–H stretching instead a broad

band is observed in this region which may be due to the

simultaneous hydration of the complex after dehydrazin-

ation (Fig. 1b). This observation suggests the complete de-

hydrazination of the complex occurs at 170 �C which was

also confirmed by chemical analysis and isothermal weight

loss studies. It has also been observed that the presence of

hydrazine is must for these complexes to exhibit self prop-

agating combustion behavior since dehydrazinated complex

do not show such behavior (Table 2).

Thermal analysis and phase identification

of decomposed product

The TG curve (Fig. 2) of Mn0.3Ni0.3Zn0.4Fe2(C4H2O4)3�
6N2H4 complex in air from room temperature to 800 �C

shows four mass loss regions with three major ones. Initial

mass loss of around 1.45 % till 60 �C corresponds to the

adsorbed moisture on the complex indicated by small

endothermic peak which is also reflected in the infrared

spectrum of the complex wherein weak absorption band is

observed in the region 3,400–3,600 cm-1. The mass loss of

15.85 % from 60 to 100 �C corresponds to the loss of three

and half hydrazine molecules. The mass loss of about

15.21 % in the TG curve from 100 to 170 �C corresponds

to the loss of two and half hydrazine molecules and com-

plete dehydrazination which was confirmed from isother-

mal mass loss studies and infrared spectrum (Fig. 1b). The

decomposition of dehydrazinated fumarato complex begins

simultaneously with dehydrazination and major mass loss

of 31.07 % in thermogravimetric measurement from 170 to

350 �C is attributed to the decarboxylation of the dehy-

drazinated complex. DSC analysis shows (Fig. 2) two

sharp exothermic peaks at 87.2 and 165.3 �C due to two

step dehydrazination and a sharp exothermic peak at

294.8 �C corresponds to the one-step oxidative decarbox-

ylation. A marginal mass loss of 3.45 % in the region

350–420 �C may be due to unburned carbon which is

indicated in the DSC by a broad exothermic peak in this

region. The complex decomposes autocatalytically at

room temperature, once ignited, to give nanocrystalline

Mn0.3Ni0.3Zn0.4Fe2O4 (as synthesized). X-ray diffraction

pattern (Fig. 3) indicates the formation of single phase

spinel ferrite and broadness of peaks indicates the nano-

crystalline nature of Mn0.3Ni0.3Zn0.4Fe2O4. The IR spectra

of the ‘‘as synthesized’’ Mn0.3Ni0.3Zn0.4Fe2O4 (Fig. 1c)

show high frequency m1 at 574.8 cm-1 and low frequency

m2 bands at 405 cm-1 which corresponds the metal–oxygen

stretching tetrahedral and octahedral sites in spinel struc-

ture supporting the formation of single-phase Mn0.3Ni0.3

Zn0.4Fe2O4 [42, 43]. The TEM (Fig. 4) shows the uniform

distribution of particles with average particle size 10 nm

confirming the nano-crystalline nature of ‘‘as synthesized’’

Mn0.3Ni0.3Zn0.4Fe2O4. The plot of magnetic moment on

temperature (Fig. 5) indicates that the sample contains

single domain particles with a curie temperature of 313 �C.
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Fig. 1 IR spectrum of (a) Hyrazinated precursor, (b) Dehydrazinated

Precursor (heated at 170 �C), and (c) Decomposed product

Table 2 TG-DSC, isothermal mass loss and chemical analysis data of Mn0.3Ni0.3Zn0.4Fe2(C4H2O4)3�6N2H4 complex

TG DSC peak/�C Remarks Isothermal mass loss studies

Temp.

range/�C

Mass

loss/%

Temp.

range/�C

Weight

loss/%

N2H4/%

RT-60 1.45 55 (Endo) Loss of adsorbed moisture RT-60 1.42 27.26

60–100 15.85 87.2 (Exo) Loss of three and half N2H4 molecule 70–100 4.62 22.57

100–170 15.21 184.7 (Exo) Loss of two and half N2H4 molecule

and decarboxylation

100–130 9.78 13.42

170–340 31.07 294.8 (Exo) 130–150 7.52 6.45

340–420 3.58 340–420 (Exo) 150–170 6.43 –
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Saturation magnetization of ‘‘as synthesized’’ Mn0.3Ni0.3

Zn0.4Fe2O4 was found to be 44.7 emu/g, which is

lower than the normally expected higher for bulk

Mn0.3Ni0.3Zn0.4Fe2O4. The reason for the lower value of

saturation magnetization is the high porosity and the small

particle size of ‘‘as synthesized’’ Mn0.3Ni0.3Zn0.4Fe2O4.

The variation of electrical resistivity versus temperature

(Fig. 6) shows decrease in resistivity with increasing tem-

perature, as expected. The plot shows change in the slope at

315 �C due to the switching of the magnetic region from

ferrimagnetic to paramagnetic which is in accordance with

the literature reports [44]. The variation of Seebeck coef-

ficient as a function of temperature shows a negative sign of

thermo-emf suggesting the material is n-type semiconductor.

Conclusions

• Mn0.3Ni0.3Zn0.4Fe2(C4H2O4)3�6N2H4 complex was

prepared for the first time and successfully employed to

obtained nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 at rel-

atively lower temperatures.

16
Exo

14

12

10

100

100

90

80

70

60

50

40

30

200 300 400

Temperature/°C

D
S

C
/m

W
/m

g

T
G

/%

500 600 700 800

8

6

4

2

0
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Fig. 4 TEM of ‘‘as synthesized’’ Mn0.3Ni0.3Zn0.4Fe2O4
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• The formation of single phase Mn0.3Ni0.3Zn0.4Fe2O4

was confirmed by X-ray diffraction as well as infrared

spectral studies.

• The average particle size of ‘‘as synthesized’’ Mn0.3

Ni0.3Zn0.4Fe2O4 was found to be 10 nm as shown by

TEM analysis.

• ‘‘As synthesized’’ Mn0.3Ni0.3Zn0.4Fe2O4 has shown the

lower value of saturation magnetization as compared to

their bulk counterpart because of its nano-crystalline

nature.

• Curie temperature of ‘‘as synthesized’’ Mn0.3Ni0.3Zn0.4

Fe2O4 was found to be in the range 313–315 �C as

determine from magnetic susceptibility and dc resistiv-

ity measurement.

• Seebeck coefficient measurement of ‘‘as synthesized’’

Mn0.3Ni0.3Zn0.4Fe2O4 displays n-type semiconducting

behavior.

Thus, this study confirms that nano-crystalline Mn0.3Ni0.3

Zn0.4Fe2O4 can be synthesize easily using fumarato–hydraz-

inate complex of mixed metals as precursor, at comparatively

lower temperatures. This material finds applications in

transformer cores used in power supplies which are an integral

part of almost every electronic equipments.
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